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1. LINEAR DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS

Definitions 1. A linear differential equation is an equation in which the dependent variable and its
derivatives appear only in the first degree and are not multiplied together. Thus the general linear
differential equation of the n'* order is of the form

d”y dn—ly
P o+ Py =X, 1

dx™ + L dgn—1 oty (1)
where Py, P,,..., P, and X are functions of x only. A linear equation of the form (1), with
Py, P, ..., P, constants, is called a linear differential equation with constant coefficients. The general
form of such an equation is

dny dnfly

ot any = X, 2

dm”+a1dx"—1+ + a,y (2)

where aq,as, ..., a, are constants and X is a function of = only.

Only linear differential equations with constant coefficients and homogeneous linear equations will
be discussed in this chapter.

Theorem 2. Let y; and ys be two solutions of a linear differential equation
dny dn—ly
dz™ t o dxn—1

and C1,Cy be two arbitrary constants. Then Ciyy + Coys is also a solution of (3).

+-+ay=0 (3)

Proof. Since y; and y, are solutions of (3), we have,

d"y, d"ly,

. =0
drn + aq T 1 + + any1
and
d"yo d" 1y,
. Wy = 0.
o + a; e + + anyo

Thus we have,

d"(Ciyr + Cayo) n d"H(Chys + Caya)

it @ o + -+ a,(Cryr + Coys)
dr(C dn_l C
_ d"(Ciy) ta ( jyl) + -+ a,Cin
dx" dant
d™(Cyys) d" Y Caya)
+ dxm +ay dyn—1 + o+ anCays (4)
d”y1 dn—lyl
d”y2 dn_lyQ
+ Y {dx" +a; e + o+ Al (5)

This proves the theorem. Il



Definitions 3. For linearly independent solutions 1, ys, . . ., yn of (3),

u= Ciy1 + Coys + - - - + Cy, is called the general solution of (3), where Cy, Cy, ..., C, are arbitrary
constants. If a function v of z, when substituted for y, satisfies (2), y = v is called a particular
solution of (2). In this case,

d™v n a1y
a
dzn ' dgn—1

Let y = u be a general solution of (3) and y = v be a particular solution of (2). Then,

n n—1
d (u+v)+a d" Hu+v)

+- tay =X

+ - Fap(u+v)

dxn U dgn—1
d™u N d" T

= a o anu
dxm Vg1

+ d"v + d" v + +
[ a [ —— P anv
dxm™ Ldgn—1

=0+X (because u is a solution of (3))

= X.
This shows that y = u + v is the general solution of (2).
The part u = Cyy; + Coys + - -+ + Cpry, is called the complementary function (C.F.) and the part
v is called the particular integral (P.1.) of (2). Thus in order to solve the differential equation (2),

we have to first find C.F., i.e., the complementary solution of (3) and then P.I., i.e., a particular
solution of (2).

4. Operators: The symbols D, D?, ..., D" are used generally for the operators
d d? dr
—,—,..., — respectively. The equation (2) can be written in the symbolic form as
dr’ dx? dx™
(Dn + aan_l + -+ an)y - Xa i.@., f(D>y - X’
where f(D) = D"+ a; D" ' +---+a,. f(D) can be factorized by ordinary rules of algebra and the
factors may be taken in any order. For example,

&Py d
T;+2£—3y:(D2+2D—3)y=(D—l)(D+3)y=(D+3)(D—1)y-

2. RULES TO FIND COMPLEMENTARY FUNCTION

In order to find the complementary function for the equation (3), we show that each root of the
polynomial equation f(D) = 0 gives rise to a solution of the differential equation (3). Further, all
these solutions are linearly independent. We show in the theorem (6) how is this achieved. However,
before this we assume the following result for a polynomial.

Proposition 5. Consider the polynomial equation
p@) = " + g™ 4+ a,

with a; € R. Then there are precisely n compler numbers ay,as, ..., oy, not necessarily distinct,
such that the following holds.

p(z) =(r—aq)(x —ag) - (x — ay).
Further, the complex numbers in the above expression occur in pair with their conjugates.
Theorem 6. The differential equation
dny dnfly
+
dzn g

with constant coefficients always admits the general solution.
2

+otany =0, (6)



Proof. We write the equation (6) as

f(D)yy = (D" +a; D" ' +... 4+ a,)y=0. (7)
To solve this equation, we consider the polynomial equation
f(D)=(D"+a D" '+ ... +a,) =0. (8)

This polynomial equation is called the auziliary equation (A.E.) for the given differential equation
(6). Treating D as a variable, and using the Proposition 5, this polynomial equation has precisely n

roots, say aj,ag, ..., a,. Hence in this case the (7) becomes
(D—ay)(D =)+ (D—ay)y=0. 9)

Clearly, for all j = 1,2,...,n, the solutions of the equations
(D —aj)y =0 (10)

are also solutions of (6). As a result, we need only to solve (10) and get n solutions of (6). Note
that for a fixed j, (10) gives,

=logy = ajx + F; (Fj is constant for each j.)
=y = eaj:erFj — eaj:peFj — I(jeajgv7
where K is a constant. We denote this solution by y; = K;e%".

Case I. All the roots of (8) are real and distinct.
In this case the general solution of (6) is given by

y=Hiyy + Hoya + -+ + Hpyn,
with constants Hy, Hs, ..., H,. Taking C; = H,K; the general solution of (6) is
y = C1eM” + Coe™ 4 - .- 4+ Ce®,
where (', Cy, ..., C), are arbitrary constants.

Case II. Two roots of (8) are equal and rest of its roots are real and distinct.
Without loss of generality, we assume that «; = ay. Then (9) will be satisfied by the solution of
(D — 1)’y =0. Let (D — o)y = z. Then (D — o)z =0, i.e., £ = aydz, which gives z = Ce™?.

Thus we have (D — aq)y = z = C1e™? or % — ayy = C1e*”® which is a linear equation with

integrating factor e/ ~*1% = ¢~ and hence its solution is
ye T = /Cleo‘lme_almdx +Cy = Cix + C,.

Thus the general solution of (6) is
y = (Crz + Co)e™" + C3e™" + -+ - + Cre™”,

where C1, (s, ..., C, are arbitrary constants. Changing the indices of the constants and rewriting
conveniently, the general solution of (6) becomes

y = (C1 + Cox)e™® 4+ C3e™* + -+« + Cpe™?,

In general, we can show similarly that if only 7 roots of (8) are equal, say, a1 = ay = -+ = «,. and
the rest are real and distinct, then the general solution of (6) is

Y= (C1 + Cox + -+ + Cpz™ 1)e™® 4 Oy 2417 4 oo 4 Clre®n®,

where C, (5, ..., C), are arbitrary constants. This method can be generalized when
Q) =Q =" =0, 0] =Qpyg="""=0Qp,0pt] =0pto="""=04, ...,
Qg1 = Qg = -+ - = oy and the rest of the roots are real and distinct.

3



Case III. One pair of roots of (8) is imaginary, say a3 = a + i3, a = o — i3 and the rest are real
and distinct. Then the general solution of (6) is

y = C1el TP 4 Chele=PT 4 Cues® .. 4 O™
= e (CLeP" 4 Coe ) 4 C3e™™ 4 - - 4 Ce®n®
= e*[C}(cos Sz + isin fz) + Cy(cos S — isin fz)]
+ C3e™7 4 - + Cpre™”  (because € = cos 0 + isin )
= (P cos fx + Pysin fx) + C3e™ + - - 4+ Cpe™®,
where P, = C1 4+ Cy and P, = i(Cy — ().

Case IV. Two pairs of roots of (8) are imaginary and equal, say, oy = a+ i = a3 and a3 =
a — 18 = a4 and the rest are real and distinct. Then as in the previous cases, the general solution
of (6) is
y = e [(Cy + Cyx) cos fx + (C5 + Cyx) sin fx] + C5e™* 4 - - - + Cpe®®.
Thus in all combinations of these cases, the general solution of (6) exists. U
Example 7. Solve
d* d? d? d
dy Ly Py dy
dx* dax3 dx? dx

Solution. Here we have (D* —2D3 + 5D? — 8D + 4)y = 0. So, as in (8), we find the roots of the
auxiliary equation (A.E.) D* —2D%* + 5D% — 8D + 4 = 0. To this end,

D*— 2D +5D? —8D +4 = (D —1)(D* — D* +4D — 4)
= (D —1)(D*+4)(D — 1)
= (D —1)*(D — 2i)(D + 2i) = 0.

+4y =0. (11)

The roots of the above equation are 1,1, +2i. That is, root 1 is repeated twice, the other two roots
2i and —2¢ are in the pair of complex conjugates. Hence the general solution of (11) is

y = (C, + Cox)e” + " (O cos 21 + Cysin 27)
= (C} + Cyx)e® + Cs cos 2z + Cy sin 2.

Example 8. Solve (D? +6D? + 12D + 8)y = 0.

Solution. We can write D* +6D?+12D +8 = 0 as (D +2)* = 0. Hence the roots of this polynomial
are —2, —2, —2, that is, the root —2 is repeated thrice. Hence the general solution is y = (C; 4 Coz +
Csyz?)e 2. d

Example 9. Solve (D? — 5D + 4)y = 0.

Solution. We can write (D?*—5D+4)y = 0 as (D—4)(D—1) = 0. Hence the roots of this polynomial
are 4, 1. Hence the general solution is y = C1e** 4+ Che®. O

Example 10. Solve (D? —4D? +5D — 2)y = 0.

3. RULES FOR FINDING PARTICULAR INTEGRAL

The complementary function is a solution of the differential equation (3). In this section we deal
with the general solution of (2), i.e., the sum of P.I. and C.F. of (2).

Definition 11. If X is a function of z, then ﬁX stands for a function Z of x such that f(D)Z = X.

This Z is called the particular solution of f(D)y = X, i.e., we write P.I. = ﬁX. Obviously f(D)
1

and Ty are the inverses of each other. In particular, %X stands for [ Xdz. We note that P.L is

always free from constant.
4



Our main concern in this section is to obtain the particular solutions of f(D)y = X. We start
with the simple form f(D) = D — . Now,

X = X =y. (12)

Operating D — a on (12), we get,

(D—a)D1 X:(D—a)yéX:(D—a)y:—y—ay

—adz «

which is a linear equation with integrating factor e/ = e~ and its solution is
ye " = [ Xe *dx. As a result, the particular integral is given by

=X = [ Xe *"du.

Example 12. Solve (D? + a?)y = cosec ax.

Solution. Here the auxiliary equation is
D*+a*>=0 ie,D=ai.

Hence C.F. = C; cosax + Cysinax. Now,

1 1 1 1
Pl = D7 g2 osecar = o {D —ia D tia| COSCCOT, (13)
where
1 iax/ —iax
— cosecar = e e ' cosec ax dx
D —ia
= ' /(cos axr — isinax)— dx
sin ax
= ¢l /(cot ax — 1) dz
, 1 _ .
=" (— log(sinaz) — m:) :
a
Similarly,
1 ez 1 log(sin az) + i
cosecar = e —log(sinazx) +ix | .
D +ia a ®

Putting both these values in (13) we get,

1 . 1 ; 1
PlL =— {e“” (— log(sin ax) — z:v) —e (— log(sin az) + Z:B)}
a

2ia a

1 1 ( ] ) eiaa: _ 6—ia3: T 6iax + e—iax
= — log(sin ax —_— | -\
PER 2i a 2

. . x
= — sinax log(sinar) — — cos ax.
a? a

Hence the general solution is

1
y=C.F. +PL=Cjcosar + Cysinar + —; sinaxlog(sinazx) — L cosaz.
a a

Example 13. Solve (D? + 4)y = sec ax.
Now we describe the rules to find the particular integral of (2) for different types of X.



Rules for finding the particular integral when X = ¢™ with a constant m.
Theorem 14. Obtain rule for finding the particular integral of f(D)y = €™ where m is constant.

Proof. For f(D) = D"+a;D" ' +ayD"?+---+a,, we have to find P.I. of f(D)y = ™. We know
that
D(e™) = me™; D*(™) = m*e™; D*(e™) = mPe™*; D"(e™) = m"e™,
Therefore,
f(D)e™ = (D" 4+ a; D" ' + ayD" " + -+ + a,,)e™
= D"™ 4+ a1 D" e™ + a; D" 2™ 4 - - 4 q, ™
= m"e™ 4+ aym™ ™ . 4 a,e™
= (m" +am" "+ +a,)e™
= f(m)e™.

Thus f(D)e™® = f(m)e™*. Operating ﬁ on both sides we get,

€ = <o )™ = fm) e (14
Suppose f(m) # 0. Dividing (14) by f(m), we get,
1 1

Thus P.I. is given by

o) T "
provided f(m) # 0.

Now if f(m) = 0, the above rule fails. So, we proceed further in the following way. Since f(m) =0,
m is a root of f(D) =0, i.e., (D —m) is a factor of f(D). Let r be the largest integer such that
(D —m)" is a factor of f(D). In other words, m is a root of f(D) = 0 with multiplicity r. In this
case, f(D) = (D —m)"p(D), with ¢(m) # 0. Hence,

1 1

fD)" T (D=mye(D)”
~(D—mye(D)°
- T (v 09)
1 1
= S (D —m) e, (16)
Now,
1 _
D - m)emx =" / e e dy = xe™";
1 mx ]' mx mx —mx mx xQ mx
me :mxe =e /e xe da::?e .
In general,
1 me L o
DO —myr" —71°
Putting this value in (16), we get, P.I. = ﬁemx = M””Tr)rlemx,
where f(D) = (D —m)"¢(D), and ¢(m) # 0. O



Remark 15. In general we can solve the above equation when e is replaced by any positive number
a. In this case, the equation under consideration becomes

f(D)y — a™  That is, f(D)y _ 6(10ga)mx.

and its P.I. becomes .

F(mloga)

ame

Example 16. Solve
(1) (D?* =3D +5)y=e".
(2) (D3 —=5D?*+ 7D — 3)y = coshz.
(3) (D* = 1)y = (e* = 1)%
Solution. (1) Here the auxiliary equation is

D%3D+5:mipz§flgl@:3 ALLY

Thus the C.F. = ¢3*/2 (Cl cos (, / %) x + Cysin ( %) x) Now,
1 1 1
Pl =~ o _ —z _
D*—3D+5  (—12-3(-1)+5 9°

Hence the general solution is
1
y=CF.+PI = e37/2 (Cl cos (\/%) z + Cysin ( %) :17) + 56_96.

(2) Here the auxiliary equation is
D*—=5D*+7D =3=0
=D*(D—1)—4D(D—1)+3(D—-1)=0
=(D—-1)(D*-4D +3) =0
=(D-1)*D-3)=0

~D=11,3.
Thus the C.F. = (C} + Coz)e® + C3e3®. Now
1
PI. = cosh z

D3 —-5D?+7D -3

1 i 1 .
“3D-120D-3)° T2D-12D-3)°
1 x 1 —T
D 121-3)" T2Ci-1p-1-3)°
11, 1
T 1D -o12°  xf
1z2 . 1
=13 " %°
xQ x 1 —x
=g -5
Hence the general solution is
y = (C, + Cox)e” 4 Cse®* — $—26$ — ie_"’.
)



(3) Here the auxiliary equation is

1 3
(D3—1):O:>(D—l)(D2+D—|—1):0:>D:1,—§j:i§.
Thus the C.F. = Cye* 4 e~ /2 [C’g cos (*/731') + C5sin <*/7§x>] Now
1 x 2
]‘ 2z x
1 2x 1 x ]' Ox
i1 o1 toioif
1, 1 0
— _peT __ 2x_1 T
7 T D-nD+Drn
1, 2 1
— o2 _ T _ 1
7 T30m-1°
e 2,
7 31
2 2 x
_c e
7 3

Hence the general solution is

y = Clem + 6—m/2

V3 : V3 e 2xe®
Cs cos (Tx + C5sin TI —1—7— 3

Example 17. Solve (D? — 5D + 6)y = 4e® subject to the conditions that
y(0) = y’(0) = 1 . Hence find y(16) .



US02CMTHO2
UNIT-4

Rules for finding the particular integral when X = sin mx or cos mx with a constant
m.

Theorem 18. Obtain rule for finding the particular integral of f(D)y = sinmax where m is constant.

Proof. To find P.I. of f(D)y = sinmaz we have to consider following cases:

Case 1. f(D) contains only even powers of D, so that it is a function of D?. Hence f(D) = p(D?).
Suppose now that ¢(—m?) # 0. Then

Pl = (D) sinmx = @(;2) sinmx = o—m?) sin max.
And if p(—m?) = 0, then
Pl = sinmx = ! sinmz = T cosme
f(D) p(D?) 2my(—m?) ’

where f(D) = @(D?) = (D + m2)(D?), ¢(~m?) # 0.

Case II. Again we consider the case when f(D) contains a mixture of odd as well as even powers
of D. We break up f(D) into its even and odd parts to get,

f(D) = 1(D?) + Dpy(D?).

In this case,

P1 1 . Psinmax — m(@ cosmx
1 = ——sinmz =
f(D) P? 4+ m?2(Q)? ’
where P = 1(—m?) and Q = po(—m?). O

Remark 19. Similarly for finding P.I. of f(D)y = cosmaz we have to consider following cases:

Case 1. f(D) contains only even powers of D, so that it is a function of D?. Hence f(D) = p(D?).
Suppose now that ¢(—m?) # 0. Then

Pl = 1 cosmx = ! cosmx = L COS M.
f(D) p(D?) p(—m?)
And if (—m?) = 0, then
Pl = L cosmx = ; cosmx = _ sinmax
f(D) p(D?) 2map(—m?) ’

where f(D) = p(D?) = (D? + m2)(D?), vo(~m?) £ 0.
Case II. Again we consider the case when f(D) contains a mixture of odd as well as even powers
of D. We break up f(D) into its even and odd parts to get,

f(D) = ¢1(D*) + Dips(D?).

In this case,

PI 1 P cos mz + m@) sinmzx
I = cosmr =
f(D) P2? 4+ m?2Q)? ’

where P = p1(—m?) and Q = po(—m?).

Notes: One can easily prove the following results. We shall need them.
(1) frmz cOSME = 5% sinma.
(2) prime sinma = — 5% cosma.
Example 20. Solve
(1) (D*+3D + 2)y = cos 3.
(2) (D +1)%y = (1+sinx)>.



Solution. (1) Here the auxiliary equation is
D*+3D+2=0= (D+2)(D+1)=0=D=—1,-2.
Thus the C.F. = Cie® + Cye ?*. Now,
1

T D2+3D+2
1

T 9+43D+2
1

cos 3x = (3D+7)(3D—7)(3D+7) cos 3x

P.I.

cos 3x

cos 3x

T 3D—7

1 1
=D+ 7)m cos 3r = —E(Z%D + 7) cos 3x

1
——— (3D
130(3 (cos 3x) + 7 cos 3x)

1
- —1—30(—9 sin 3x + 7 cos 3zx).

Hence the general solution is
y=CF.+PlL

1
=Cle 4 Che 2 — ﬁ(—9 sin 3x + 7 cos 3x).

(2) Here the auxiliary equation is
(D+1)2=0=D=-1,-1.
Thus the C.F. = (C; + Cyx)e *. Now,
1
(D + 1)2(

1 1425 +1—(3os2$
= — sing + ——
(D +1)? 2
1 3 1 1 Ccos 2x

— - 249 -  _dinr-
D112 "D " T Dy 2

L "t ! sinx—1 ! cos 2

(D +1)? (D?+2D +1) 2(D*+2D+1)

1 1
+2ﬁsinx— émCOSQI’

PI = 1+ 2sinz + sin® 1)

1
— COST — —<2D + 3)(4D2——9) COSZIL'

—cosz + %(ZD + 3) cos 2z

1
=g —cosT+ %(—4sin2x+ 3 cos 2x).

Hence the general solution is
y=CF.+PL

3 1
= (C} + Cyw)e™ + 5 —cosz %(—4 sin 2x + 3 cos 2).

10



21. Rule for finding the particular integral when X is of the form x™ with a constant
positive integer m.

ﬁxm. First we take out the lowest degree term — with sign — from
f(D), leaving the remaining factor of the form 1 4 ¢(D). We shall expand this factor into a series
of powers of D. In fact, since D¥z™ = 0 for each k > m, the power series will reduce to a finite
polynomial in D with possible highest power m. Let us recall certain power series to be used.

(1-D)'=1+D+D*+D*+---

Here we have to evaluate

—3:1+3D+6D2+10D3+---+wyﬂrm

2=1-2D+3D*—4D3+

3 =1-3D+6D*—-10D3

L(r+1)(r+2)
2

)
)
Y'=1-D+D*—-D*+
)
)

_|_..._|_(_1) D'+ ...

In general, using Binomial Theorem, for n € Z,

(1—D)”:1+nD+—n(n2‘_ 1)D2+n(n_13)‘(n_1)1)3+...

Example 22. Solve
(1) (D? - D? —6D)y = 3.
(2) (D?+4D)y = sin 2x + 3e** + 2x.
Solution. (1) Here the auxiliary equation is
D*—D*—6D =0
= D(D*~D-6)=0
= D(D-3)(D+2)=0

=D =0,3,-2
Thus C.F. = Oy + 09> + C5e%*. Now,
1
Pl = 3
D3 _—D?>—6D"
1 3
= x
—6D(1 — 222

1 D>~ D\ '
=——(1- 3
6D( 6 ) v

1 _1+D2—D+(DQ—D>2+(D2—D>3+W]363
6D 6 6 6
1 [, D>-D ., (D‘-2D%+D?\ , D°,
——6—D_x+ 6 x—i—( 36 )x—2—16x +}
1 [, 6x—322 0-12+6x 1
5 A S T _%}
2 2 o 2?r 2
T2 1273 18 72 216
zt o T2 13w
-y

24 36 72 216
11



Hence the general solution is

y=CF.+PlL
4 3 722 13z
=C C 3z C 721_‘%‘_ (L’___ el
1+ Cae o+ Cse 51736 72 T 216

(2) Here the auxiliary equation is

D¥+4D=0= D(D*+4)=0= D =0,+2i.

Thus the
C.F. = C1e" + Oy cos 2z + Cy sin 2z
=C] + Cycos2x + Cssin 2.
Now,
1 : 2z
Pl = m(Sln 2x + 3e”* + 2$)
1 cos 2x n 3e?” e
T D244 2 2 7
1 1 3 1 1
= —— 2 — 2x 2
2D 14 T o a” T gt
T 9 n 3 9 n 1 1 9
= ——sin2z 4+ —e -z
8 16 4(1+ %2)
3 1 D\
:_§81n2m+ﬁe%+1 ( I) z?
3 1 D? [ D*\?
:—%Sin2$+1—662z+4—1(1—j+(j) — z?
3 1 D? D*
= —gsmm + 1—6623” + 1 (xQ - Tﬁ + Eﬁ — )
3 21
= —%sian + Eeh + % 3
Hence the general solution is
y=CF.+PlL

2

3
=C) + Cycos2x + Cgsin 2z — %sinQ:c—i— EGQI—F xz —

ol =

Rule for finding the particular integral when X = e®*V where V is a
function of x.

: 1 ar __ ,ax 1
Theorem 23. In usual notation prove that D)€ V=e FDTa)

V', where V is a function of x.

1
f(D)

D(e™W) = e DW + ae™W = e**(D + a)W.
D?*(e®™W) = D(e®*(D + a)W) = e*(D + a)*W.

Proof. Here we have to evaluate eV . Let us note that for any function W of =z,

In general,

D"(e®™W) = e (D + a)"W.
12



Therefore,
f( ) arTy = ( _‘_aan—l_‘_‘_‘_‘_aln)eaa:W
e’”[(D +a)"+ay(D+a)"" +- +a )W

“f(D+a)W.
Suppose now that W is given by f(D+a)W =V. Then W = TV As aresult, f(D)e” f(DlJra)V =
e*V. So, operating f( on both the sides gives,
1 1
6(11‘ V — eaZ’V
f(D+a)"  f(D)
Hence we have ( 7€ eV = ¥ ——— T D = V', where V is a function of z. O

Example 24. Solve (D? + 2)y = (2* + 1)e3® + €” cos 2.

Solution. Here the auxiliary equation is
D*+2=0= D =+iV2.
Thus the C.F. = C) cos(v2z) + Cysin(v/2 ). Now

1
Pl = D2—+2((x2 +1)e* + €* cos 21)
1 X
= DZ—_|_263 (.TZ‘{‘].) —|—
= 6396;(332 +1)+ ez; cos 2
(D+3)2+2 (D+1)2+2
1 1
3x 2 T
—e (2414t cos2
e D2—|—6D—|—11(x +1)+e FERGY, B R
6330

1 2 x
1L (1+ 2572)

52 D?*+6D\ " 1
¢ <1 + L) (2 +1)+€"(2D + 1)——— cos 2z

1
DT 26”” CoS 2%

CoSs 2x

1

2D — 1

11 AD2 — 1
e D?>4+6D (D*+6D\’

=—|1- — ... 211
11( 11 +( 11 > (@ +1)

1
— —e"(2D + 1) cos 2x

17
sz 2+12 72 1
- 61—1 <x2 +1- +11 "+ 121) — ﬁem(—4sin2x+cos2x)
sz 12 171 1
= i—l <:c2 11x + ﬁ) — ﬁeg”(—élsin 2z + cos 2x).
Hence the general solution is
y=CF.+PL

= O cos(V2z) + Cysin(v2z)

se 12 171 1
+ o (x2 — 1—133 + m) — 1—76:6(—4Si1121' + cos 2z).

Example 25. Solve (D? — 2D + 1)y = z2e3®.
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Rule for finding the particular integral when X is of the form xV, where V is a
function of x.

Theorem 26. In usual notation prove that ﬁxv = [m — ﬁf’(D) ﬁ\/,

where V is function of x.

Proof. We have to evaluate ﬁxv. Let W be any function of x. Let ' denote the derivative with

respect to D. Then
D(aW) =aDW + W
d
=xDW + — (D)W

dD
=xDW + D'W.

Also,

D*(zW) = D(xDW + W)
= +D*W + DW + DW
= 2 D?W + 2DW

d
— D2 o D2
rD*W + dD( W
= 2 D*W + (D?)'W.
In general,
D" (zW) = xD"W + (D")W.

Therefore,

f(D)aW = (D™ +a; D" ' 4 - - + a,)zW
=xf(D)W + f(D)W.
Now suppose that W is given by f(D)W =V.
Hence, W = ﬁ‘/.
Therefore, f(D)z 55V =2V + f'(D) 55 V-
Operating by ﬁ on both the sides, we obtain,

1 1 1 1
oy o iy Py
! L] L
= 10 = [~ 70y 7y
Hence,
! I B
o = 1 7 @) 7
where V is a function of z. O

Example 27. Solve (D? 4+ 9)y = zsin .
Solution. Here the auxiliary equation is

D’+9=0= D = +3i.
14



Thus the C.F. = ] cos 3x + Cy sin 3x. Now,

1
Pl = D7 9(9& sin x)
1 1 .
= (ZB ~In +92D) D19 sin
=x sinex —2D————=sinz
D?+9 (D? +9)2
1 1
= xg sinx — 2Da sin x
_rsinr  CosT
-8 32
Hence the general solution is
y=CF.+PL
= (1 cos3x + Cysin 3z + T CES;.
U
4. SOLUTION OF HOMOGENEOUS LINEAR DIFFERENTIAL EQUATIONS
In this section, we consider the equation
" dny i dn—ly
X w‘*‘dﬂ)ﬁ d:L‘n_l +--~—|—any=X, (17)
which is called a homogeneous linear differential equation of order n, where ay, as, . . ., a, are constants

and X is a function of x. This equation is also known as Cauchy’s homogeneous linear equation.
In what follows we shall denote the derivative with respect to the variable z by D;. To solve

. 2 : _ d _ 1 dy _ dyds _ dyl
tl;e eqliatlon (17), let x = ed, that is, z = logz. Hence & = -. Then % = £ = %~ or
ay _ oy —
rgt = 52 = D1y, where Dy = +-. Further,

dy _d (ldy
dz?  dx \zdz

Hence,
xQ@ _ Py dy
dz? dz? dz
where D = dilz. Similarly,

d3
x?’d—xg — (D} —3D% +2D,)y = Dy(D, — 1)(D; — 2)y.
Continuing in this fashion we get,
d’rL
x”d—xz = Di(Dy — 1)(D1 —2)...(Dy —n+ 1)y.
Substituting all these values in (17) we have,
[Dy(Dy — 1)...(Dy —n+ 1) + ayDy(Dy — 1)...(D1 —n+2) + -+ aJy = Z.

That is,
o(D1)y = Z,
15



where Z is a function of z.
This is a linear differential equation with constant coefficients with 2z as an independent variable.
This equation can now be solved by the methods already discussed.

Example 28. Solve
(1) x?’% + Qfo;TZ +2y =15(x — 7 1).
(2) x?’% — 3224 4 2y = log x cos(log z).

Solution. (1) Here the given equation is a homogeneous linear equation. Let z = e?, that is, z = log z.
Then the given equation becomes

(Dy(Dy — 1)(Dy — 2) +2D1(Dy — 1) + 2)y = 15(e* — e %),

hereD; = —
whereLr/q dz

= (D} — D} +2)y = 15(e” — e77).
We solve this equation for y as a function of z. Here the auxiliary equation is
D} —D;+2=0
=D3(Dy+1) —2Dy(D; +1)+2(D; +1) =0
=(D; +1)(D? —2D; +2) =0
=D, =—1,1+4.

Thus C.F. = Cie ™ + €*(Cycos z + Cssin z). That is,
C.F. = Ciz* + 2(Cy cos(log x) + Cssin(log ).

Now,
PI ! 15(e* — e77)
A = = e —c
D} —D?+2
1 1
=15 " — 15— "
DD +2° " DD i2f
15 . s 1 N
= —e — e
2 (D1 +1)(D? — 2Dy +2)
15 1
= e~ 15 —
2 ° 5D+ 1)°
15
= ?ez—Bze’Z
15
= 333—333_1 log

Hence the general solution is

y=CF.+PL

15
= C1o~ + 2(Cy cos(log x) + Cysin(log x)) + 5T 3z 'log z.

(2) Given equation can be written as
(#2D* — 32D + 1)y = 2~ ' log x cos(log x), (18)
which is a homogeneous linear equation. Let z = €, that is, z = log . Then equation (18) becomes
(D1(D1 —1)—3D; + 1)y =e “zcosz

= (D} —4D; + 1)y = e “zcos z.
16



Hence the auxiliary equation is
D} —4D; +1=0
44+ +/12
—— =2+ V3.

=D, =

Hence, C.F. = C;e®tV3)z 4 Che2-V3)z
= 016(2+\/§) logz 4 026(2—\/§) log ©
= Cya?tV3 4 G V3
= 2%(CraY? + Cha™3).
Now,
- z—efz(z Cos 2)
Di —4D; +1
_ -z 1 ( )
=e (D1_1)2_4(D1_1)+1ZCOSZ
. 1
S —
D% —6D; +6
1 1

= "D —6m 76 - 2D, — 6
& _ZD%—6D1+6COSZ (D%—6D1+6>2( 1 )COSZ:|

(zcos z)

1 1 )
= e _chosz—(D%_6D1+6)2(—281H2—6C082):|

1 1
—z _25 6D, cos z + m(281n2+6008z)]

1
25 — 60D, + 36D?

1
=e " |2(5 +6D1)m cos z + (2sinz + 6 cos z)}
i 1

1 1
= |2(5+ 6D1)6—1 cos z + T&)DI(Q sin z 4 6 cos z)}

- 1
— e [ (5cosz — 6sinz) —(60D; — 11)

. (2sinz+6
61 360007 — 121 2SmE t COSZ)]

1
= e 7 _62_1<5 CcoS 2 — 6sinZ) + (60D1 — 1].)%(251112 + 6 cos Z):|

- 1
— e ? %(5 cos z — 6sin 2) +ﬁ(120 cos z — 360 sin z — 22 sin z — 66 cos z)}

1
et 6i1<5 cosz — 6sinz) + 373(54(:082 - 38281112)]

] 1
- oglx (5 cos(log x) — 6sin(log x)) "‘ﬁ@‘l cos(log ) — 382sin(log xw '

=x
Hence the general solution is y = C.F. + P.L.

y = 22(CxV34+CorV3) 427! (182 (5 cos(log ) — 6sin(log ) + 557 (54 cos(log z) — 382 sin(log x))]D

AAAAAAAAAAAA
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