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1. Linear differential equations with constant coefficients

Definitions 1. A linear differential equation is an equation in which the dependent variable and its
derivatives appear only in the first degree and are not multiplied together. Thus the general linear
differential equation of the nth order is of the form

dny

dxn
+ P1

dn−1y

dxn−1
+ · · ·+ Pny = X, (1)

where P1, P2, . . . , Pn and X are functions of x only. A linear equation of the form (1), with
P1, P2, . . . , Pn constants, is called a linear differential equation with constant coefficients. The general
form of such an equation is

dny

dxn
+ a1

dn−1y

dxn−1
+ · · ·+ any = X, (2)

where a1, a2, . . . , an are constants and X is a function of x only.

Only linear differential equations with constant coefficients and homogeneous linear equations will
be discussed in this chapter.

Theorem 2. Let y1 and y2 be two solutions of a linear differential equation

dny

dxn
+ a1

dn−1y

dxn−1
+ · · ·+ any = 0 (3)

and C1, C2 be two arbitrary constants. Then C1y1 + C2y2 is also a solution of (3).

Proof. Since y1 and y2 are solutions of (3), we have,

dny1
dxn

+ a1
dn−1y1
dxn−1

+ · · ·+ any1 = 0

and
dny2
dxn

+ a1
dn−1y2
dxn−1

+ · · ·+ any2 = 0.

Thus we have,

dn(C1y1 + C2y2)

dxn
+ a1

dn−1(C1y1 + C2y2)

dxn−1
+ · · ·+ an(C1y1 + C2y2)

=
dn(C1y1)

dxn
+ a1

dn−1(C1y1)

dxn−1
+ · · ·+ anC1y1

+
dn(C2y2)

dxn
+ a1

dn−1(C2y2)

dxn−1
+ · · ·+ anC2y2 (4)

= C1

[
dny1
dxn

+ a1
dn−1y1
dxn−1

+ · · ·+ any1

]
+ C2

[
dny2
dxn

+ a1
dn−1y2
dxn−1

+ · · ·+ any2

]
(5)

= 0.

This proves the theorem. �
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Definitions 3. For linearly independent solutions y1, y2, . . . , yn of (3),
u = C1y1 +C2y2+ · · ·+Cnyn is called the general solution of (3), where C1, C2, . . . , Cn are arbitrary
constants. If a function v of x, when substituted for y, satisfies (2), y = v is called a particular
solution of (2). In this case,

dnv

dxn
+ a1

dn−1v

dxn−1
+ · · ·+ anv = X.

Let y = u be a general solution of (3) and y = v be a particular solution of (2). Then,

dn(u+ v)

dxn
+ a1

dn−1(u+ v)

dxn−1
+ · · ·+ an(u+ v)

=

(
dnu

dxn
+ a1

dn−1u

dxn−1
+ · · ·+ anu

)
+

(
dnv

dxn
+ a1

dn−1v

dxn−1
+ · · ·+ anv

)
= 0 +X (because u is a solution of (3))

= X.

This shows that y = u+ v is the general solution of (2).
The part u = C1y1 + C2y2 + · · · + Cnyn is called the complementary function (C.F.) and the part
v is called the particular integral (P.I.) of (2). Thus in order to solve the differential equation (2),
we have to first find C.F., i.e., the complementary solution of (3) and then P.I., i.e., a particular
solution of (2).

4. Operators: The symbols D,D2, . . . , Dn are used generally for the operators
d

dx
,
d2

dx2
, . . . ,

dn

dxn
respectively. The equation (2) can be written in the symbolic form as

(Dn + a1D
n−1 + · · ·+ an)y = X, i.e., f(D)y = X,

where f(D) = Dn + a1D
n−1 + · · ·+ an. f(D) can be factorized by ordinary rules of algebra and the

factors may be taken in any order. For example,

d2y

dx2
+ 2

dy

dx
− 3y = (D2 + 2D − 3)y = (D − 1)(D + 3)y = (D + 3)(D − 1)y.

2. Rules to find complementary function

In order to find the complementary function for the equation (3), we show that each root of the
polynomial equation f(D) = 0 gives rise to a solution of the differential equation (3). Further, all
these solutions are linearly independent. We show in the theorem (6) how is this achieved. However,
before this we assume the following result for a polynomial.

Proposition 5. Consider the polynomial equation

p(x) = xn + a1x
n−1 + · · ·+ an,

with ai ∈ R. Then there are precisely n complex numbers α1, α2, . . . , αn, not necessarily distinct,
such that the following holds.

p(x) = (x− α1)(x− α2) · · · (x− αn).

Further, the complex numbers in the above expression occur in pair with their conjugates.

Theorem 6. The differential equation

dny

dxn
+ a1

dn−1y

dxn−1
+ · · ·+ any = 0, (6)

with constant coefficients always admits the general solution.
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Proof. We write the equation (6) as

f(D)y = (Dn + a1D
n−1 + . . .+ an)y = 0. (7)

To solve this equation, we consider the polynomial equation

f(D) = (Dn + a1D
n−1 + . . .+ an) = 0. (8)

This polynomial equation is called the auxiliary equation (A.E.) for the given differential equation
(6). Treating D as a variable, and using the Proposition 5, this polynomial equation has precisely n
roots, say α1, α2, . . . , αn. Hence in this case the (7) becomes

(D − α1)(D − α2) · · · (D − αn)y = 0. (9)

Clearly, for all j = 1, 2, . . . , n, the solutions of the equations

(D − αj)y = 0 (10)

are also solutions of (6). As a result, we need only to solve (10) and get n solutions of (6). Note
that for a fixed j, (10) gives,

dy

dx
− αjy = 0

⇒dy

y
= αjdx

⇒ log y = αjx+ Fj (Fj is constant for each j.)

⇒y = eαjx+Fj = eαjxeFj = Kje
αjx,

where Kj is a constant. We denote this solution by yj = Kje
αjx.

Case I. All the roots of (8) are real and distinct.
In this case the general solution of (6) is given by

y = H1y1 +H2y2 + · · ·+Hnyn,

with constants H1, H2, . . . , Hn. Taking Cj = HjKj the general solution of (6) is

y = C1e
α1x + C2e

α2x + · · ·+ Cne
αnx,

where C1, C2, . . . , Cn are arbitrary constants.

Case II. Two roots of (8) are equal and rest of its roots are real and distinct.
Without loss of generality, we assume that α1 = α2. Then (9) will be satisfied by the solution of

(D − α1)
2y = 0. Let (D − α1)y = z. Then (D − α1)z = 0, i.e., dz

z
= α1dx, which gives z = C1e

α1x.

Thus we have (D − α1)y = z = C1e
α1x or dy

dx
− α1y = C1e

α1x, which is a linear equation with

integrating factor e
∫
−α1dx = e−α1x and hence its solution is

ye−α1x =

∫
C1e

α1xe−α1xdx+ C2 = C1x+ C2.

Thus the general solution of (6) is

y = (C1x+ C2)e
α1x + C3e

α3x + · · ·+ Cne
αnx,

where C1, C2, . . . , Cn are arbitrary constants. Changing the indices of the constants and rewriting
conveniently, the general solution of (6) becomes

y = (C1 + C2x)e
α1x + C3e

α3x + · · ·+ Cne
αnx,

In general, we can show similarly that if only r roots of (8) are equal, say, α1 = α2 = · · · = αr and
the rest are real and distinct, then the general solution of (6) is

y = (C1 + C2x+ · · ·+ Crx
r−1)eα1x + Cr+1e

αr+1x + · · ·+ Cne
αnx,

where C1, C2, . . . , Cn are arbitrary constants. This method can be generalized when
α1 = α2 = · · · = αr, αr+1 = αr+2 = · · · = αp , αp+1 = αp+2 = · · · = αq, . . . ,
αs+1 = αs+2 = · · · = αt and the rest of the roots are real and distinct.
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Case III. One pair of roots of (8) is imaginary, say α1 = α + iβ, α2 = α − iβ and the rest are real
and distinct. Then the general solution of (6) is

y = C1e
(α+iβ)x + C2e

(α−iβ)x + C3e
α3x + · · ·+ Cne

αnx

= eαx(C1e
iβx + C2e

−iβx) + C3e
α3x + · · ·+ Cne

αnx

= eαx[C1(cos βx+ i sin βx) + C2(cos βx− i sin βx)]

+ C3e
α3x + · · ·+ Cne

αnx (because eiθ = cos θ + i sin θ)

= eαx(P1 cos βx+ P2 sin βx) + C3e
α3x + · · ·+ Cne

αnx,

where P1 = C1 + C2 and P2 = i(C1 − C2).

Case IV. Two pairs of roots of (8) are imaginary and equal, say, α1 = α + iβ = α2 and α3 =
α − iβ = α4 and the rest are real and distinct. Then as in the previous cases, the general solution
of (6) is

y = eαx[(C1 + C2x) cos βx+ (C3 + C4x) sin βx] + C5e
α5x + · · ·+ Cne

αnx.

Thus in all combinations of these cases, the general solution of (6) exists. �

Example 7. Solve

d4y

dx4
− 2

d3y

dx3
+ 5

d2y

dx2
− 8

dy

dx
+ 4y = 0. (11)

Solution. Here we have (D4 − 2D3 + 5D2 − 8D + 4)y = 0. So, as in (8), we find the roots of the
auxiliary equation (A.E.) D4 − 2D3 + 5D2 − 8D + 4 = 0. To this end,

D4 − 2D3 + 5D2 − 8D + 4 = (D − 1)(D3 −D2 + 4D − 4)

= (D − 1)(D2 + 4)(D − 1)

= (D − 1)2(D − 2i)(D + 2i) = 0.

The roots of the above equation are 1, 1,±2i. That is, root 1 is repeated twice, the other two roots
2i and −2i are in the pair of complex conjugates. Hence the general solution of (11) is

y = (C1 + C2x)e
x + e0x(C3 cos 2x+ C4 sin 2x)

= (C1 + C2x)e
x + C3 cos 2x+ C4 sin 2x.

�

Example 8. Solve (D3 + 6D2 + 12D + 8)y = 0.

Solution. We can write D3+6D2+12D+8 = 0 as (D+2)3 = 0. Hence the roots of this polynomial
are −2,−2,−2, that is, the root −2 is repeated thrice. Hence the general solution is y = (C1+C2x+
C3x

2)e−2x. �

Example 9. Solve (D2 − 5D + 4)y = 0.

Solution. We can write (D2−5D+4)y = 0 as (D−4)(D−1) = 0. Hence the roots of this polynomial
are 4, 1. Hence the general solution is y = C1e

4x + C2e
x. �

Example 10. Solve (D3 − 4D2 + 5D − 2)y = 0.

3. Rules for finding particular integral

The complementary function is a solution of the differential equation (3). In this section we deal
with the general solution of (2), i.e., the sum of P.I. and C.F. of (2).

Definition 11. IfX is a function of x, then 1
f(D)

X stands for a function Z of x such that f(D)Z = X.

This Z is called the particular solution of f(D)y = X, i.e., we write P.I. = 1
f(D)

X. Obviously f(D)

and 1
f(D)

are the inverses of each other. In particular, 1
D
X stands for

∫
Xdx. We note that P.I. is

always free from constant.
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Our main concern in this section is to obtain the particular solutions of f(D)y = X. We start
with the simple form f(D) = D− α. Now,

1

f(D)
X =

1

D − α
X = y. (12)

Operating D − α on (12), we get,

(D − α)
1

D − α
X = (D − α)y ⇒ X = (D − α)y =

dy

dx
− αy

⇒ dy

dx
− αy = X,

which is a linear equation with integrating factor e
∫
−αdx = e−αx, and its solution is

ye−αx =
∫
Xe−αxdx. As a result, the particular integral is given by

1
D−α

X = eαx
∫
Xe−αxdx.

Example 12. Solve (D2 + a2)y = cosec ax.

Solution. Here the auxiliary equation is

D2 + a2 = 0 i.e., D = ±ai.
Hence C.F. = C1 cos ax+ C2 sin ax. Now,

P.I. =
1

D2 + a2
cosec ax =

1

2ia

[
1

D − ia
− 1

D + ia

]
cosec ax, (13)

where
1

D − ia
cosec ax = eiax

∫
e−iax cosec ax dx

= eiax
∫
(cos ax− i sin ax)

1

sin ax
dx

= eiax
∫
(cot ax− i) dx

= eiax
(
1

a
log(sin ax)− ix

)
.

Similarly,
1

D + ia
cosec ax = e−iax

(
1

a
log(sin ax) + ix

)
.

Putting both these values in (13) we get,

P.I. =
1

2ia

[
eiax

(
1

a
log(sin ax)− ix

)
− e−iax

(
1

a
log(sin ax) + ix

)]
=

1

a2
log(sin ax)

(
eiax − e−iax

2i

)
− x

a

(
eiax + e−iax

2

)
=

1

a2
sin ax log(sin ax)− x

a
cos ax.

Hence the general solution is

y = C.F. + P.I. = C1 cos ax+ C2 sin ax+
1

a2
sin ax log(sin ax)− x

a
cos ax.

�
Example 13. Solve (D2 + 4)y = sec ax.

Now we describe the rules to find the particular integral of (2) for different types of X.
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Rules for finding the particular integral when X = emx with a constant m.

Theorem 14. Obtain rule for finding the particular integral of f(D)y = emx where m is constant.

Proof. For f(D) = Dn+ a1D
n−1+ a2D

n−2+ · · ·+ an, we have to find P.I. of f(D)y = emx. We know
that

D(emx) = memx; D2(emx) = m2emx; D3(emx) = m3emx; Dn(emx) = mnemx.

Therefore,

f(D)emx = (Dn + a1D
n−1 + a2D

n−2 + · · ·+ an)e
mx

= Dnemx + a1D
n−1emx + a2D

n−2emx + · · ·+ ane
mx

= mnemx + a1m
n−1emx + · · ·+ ane

mx

= (mn + a1m
n−1 + · · ·+ an)e

mx

= f(m)emx.

Thus f(D)emx = f(m)emx. Operating 1
f(D)

on both sides we get,

emx =
1

f(D)
f(m)emx = f(m)

1

f(D)
emx. (14)

Suppose f(m) ̸= 0. Dividing (14) by f(m), we get,

1

f(m)
emx =

1

f(D)
emx.

Thus P.I. is given by
1

f(D)
emx =

1

f(m)
emx, (15)

provided f(m) ̸= 0.
Now if f(m) = 0, the above rule fails. So, we proceed further in the following way. Since f(m) = 0,
m is a root of f(D) = 0, i.e., (D −m) is a factor of f(D). Let r be the largest integer such that
(D −m)r is a factor of f(D). In other words, m is a root of f(D) = 0 with multiplicity r. In this
case, f(D) = (D −m)rφ(D), with φ(m) ̸= 0. Hence,

1

f(D)
emx =

1

(D −m)rφ(D)
emx

=
1

(D −m)r
1

φ(D)
emx

=
1

(D −m)r
1

φ(m)
emx (by (15))

=
1

φ(m)

1

(D −m)r
emx. (16)

Now,

1

(D −m)
emx = emx

∫
e−mxemxdx = xemx;

1

(D −m)2
emx =

1

(D −m)
xemx = emx

∫
e−mxxemxdx =

x2

2
emx.

In general,

1

(D −m)r
emx =

xr

r!
emx.

Putting this value in (16), we get, P.I. = 1
f(D)

emx = xr

φ(m)r!
emx,

where f(D) = (D −m)rφ(D), and φ(m) ̸= 0. �
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Remark 15. In general we can solve the above equation when e is replaced by any positive number
a. In this case, the equation under consideration becomes

f(D)y = amx. That is, f(D)y = e(log a)mx.

and its P.I. becomes
1

f(m log a)
amx.

Example 16. Solve

(1) (D2 − 3D + 5)y = e−x.

(2) (D3 − 5D2 + 7D − 3)y = cosh x.

(3) (D3 − 1)y = (ex − 1)2.

Solution. (1) Here the auxiliary equation is

D2 − 3D + 5 = 0 ⇒ D =
3±

√
9− 20

2
=

3

2
± i

√
11

2
.

Thus the C.F. = e3x/2
(
C1 cos

(√
11
2

)
x+ C2 sin

(√
11
2

)
x
)
. Now,

P.I. =
1

D2 − 3D + 5
e−x =

1

(−1)2 − 3(−1) + 5
e−x =

1

9
e−x.

Hence the general solution is

y = C.F. + P.I. = e3x/2
(
C1 cos

(√
11
2

)
x+ C2 sin

(√
11
2

)
x

)
+

1

9
e−x.

(2) Here the auxiliary equation is

D3 − 5D2 + 7D − 3 = 0

⇒D2(D − 1)− 4D(D − 1) + 3(D − 1) = 0

⇒(D − 1)(D2 − 4D + 3) = 0

⇒(D − 1)2(D − 3) = 0

⇒D = 1, 1, 3.

Thus the C.F. = (C1 + C2x)e
x + C3e

3x. Now

P.I. =
1

D3 − 5D2 + 7D − 3
coshx

=
1

(D − 1)2(D − 3)

(
ex + e−x

2

)
=

1

2(D − 1)2(D − 3)
ex +

1

2(D − 1)2(D − 3)
e−x

=
1

2(D − 1)2(1− 3)
ex +

1

2(−1− 1)2(−1− 3)
e−x

= −1

4

1

(D − 1)2
ex − 1

32
e−x

= −1

4

x2

2!
ex − 1

32
e−x

= −x
2

8
ex − 1

32
e−x.

Hence the general solution is

y = (C1 + C2x)e
x + C3e

3x − x2

8
ex − 1

32
e−x.
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(3) Here the auxiliary equation is

(D3 − 1) = 0 ⇒ (D − 1)(D2 +D + 1) = 0 ⇒ D = 1,−1

2
± i

√
3

2
.

Thus the C.F. = C1e
x + e−x/2

[
C2 cos

(√
3
2
x
)
+ C3 sin

(√
3
2
x
)]

. Now

P.I. =
1

D3 − 1
(ex − 1)2

=
1

D3 − 1
(e2x − 2ex + 1)

=
1

D3 − 1
e2x − 1

D3 − 1
2ex +

1

D3 − 1
e0x

=
1

7
e2x − 1

(D − 1)(D2 +D + 1)
2ex − 1e0x

=
1

7
e2x − 2

3

1

(D − 1)
ex − 1

=
e2x

7
− 2

3

x

1!
ex − 1

=
e2x

7
− 2xex

3
− 1.

Hence the general solution is

y = C1e
x + e−x/2

[
C2 cos

(√
3

2
x

)
+ C3 sin

(√
3

2
x

)]
+
e2x

7
− 2xex

3
− 1.

�
Example 17. Solve (D2 − 5D + 6)y = 4ex subject to the conditions that
y(0) = y’(0) = 1 . Hence find y(16) .
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US02CMTH02
UNIT-4

Rules for finding the particular integral when X = sin mx or cos mx with a constant
m.

Theorem 18. Obtain rule for finding the particular integral of f(D)y = sinmx where m is constant.

Proof. To find P.I. of f(D)y = sinmx we have to consider following cases:

Case I. f(D) contains only even powers of D, so that it is a function of D2. Hence f(D) = φ(D2).
Suppose now that φ(−m2) ̸= 0. Then

P.I. =
1

f(D)
sinmx =

1

φ(D2)
sinmx =

1

φ(−m2)
sinmx.

And if φ(−m2) = 0, then

P.I. =
1

f(D)
sinmx =

1

φ(D2)
sinmx =

−x
2mψ(−m2)

cosmx,

where f(D) = φ(D2) = (D2 +m2)ψ(D2), ψ(−m2) ̸= 0.

Case II. Again we consider the case when f(D) contains a mixture of odd as well as even powers
of D. We break up f(D) into its even and odd parts to get,

f(D) = φ1(D
2) +Dφ2(D

2).

In this case,

P.I. =
1

f(D)
sinmx =

P sinmx−mQ cosmx

P 2 +m2Q2
,

where P = φ1(−m2) and Q = φ2(−m2). �
Remark 19. Similarly for finding P.I. of f(D)y = cosmx we have to consider following cases:

Case I. f(D) contains only even powers of D, so that it is a function of D2. Hence f(D) = φ(D2).
Suppose now that φ(−m2) ̸= 0. Then

P.I. =
1

f(D)
cosmx =

1

φ(D2)
cosmx =

1

φ(−m2)
cosmx.

And if φ(−m2) = 0, then

P.I. =
1

f(D)
cosmx =

1

φ(D2)
cosmx =

x

2mψ(−m2)
sinmx,

where f(D) = φ(D2) = (D2 +m2)ψ(D2), ψ(−m2) ̸= 0.

Case II. Again we consider the case when f(D) contains a mixture of odd as well as even powers
of D. We break up f(D) into its even and odd parts to get,

f(D) = φ1(D
2) +Dφ2(D

2).

In this case,

P.I. =
1

f(D)
cosmx =

P cosmx+mQ sinmx

P 2 +m2Q2
,

where P = φ1(−m2) and Q = φ2(−m2).

Notes: One can easily prove the following results. We shall need them.

(1) 1
D2+m2 cosmx = x

2m
sinmx.

(2) 1
D2+m2 sinmx = − x

2m
cosmx.

Example 20. Solve

(1) (D2 + 3D + 2)y = cos 3x.

(2) (D + 1)2y = (1 + sin x)2.
9



Solution. (1) Here the auxiliary equation is

D2 + 3D + 2 = 0 ⇒ (D + 2)(D + 1) = 0 ⇒ D = −1,−2.

Thus the C.F. = C1e
−x + C2e

−2x. Now,

P.I. =
1

D2 + 3D + 2
cos 3x

=
1

−9 + 3D + 2
cos 3x

=
1

3D − 7
cos 3x = (3D + 7)

1

(3D − 7)(3D + 7)
cos 3x

= (3D + 7)
1

9D2 − 49
cos 3x = − 1

130
(3D + 7) cos 3x

= − 1

130
(3D(cos 3x) + 7 cos 3x)

= − 1

130
(−9 sin 3x+ 7 cos 3x).

Hence the general solution is

y = C.F. + P.I.

= C1e
−x + C2e

−2x − 1

130
(−9 sin 3x+ 7 cos 3x).

(2) Here the auxiliary equation is

(D + 1)2 = 0 ⇒ D = −1,−1.

Thus the C.F. = (C1 + C2x)e
−x. Now,

P.I. =
1

(D + 1)2
(1 + 2 sin x+ sin2 x)

=
1

(D + 1)2

(
1 + 2 sinx+

1− cos 2x

2

)
=

1

(D + 1)2
3

2
+ 2

1

(D + 1)2
sinx− 1

(D + 1)2
cos 2x

2

=
3

2

1

(D + 1)2
e0x + 2

1

(D2 + 2D + 1)
sinx− 1

2

1

(D2 + 2D + 1)
cos 2x

=
3

2
+ 2

1

2D
sin x− 1

2

1

(2D − 3)
cos 2x

=
3

2
− cos x− 1

2
(2D + 3)

1

(4D2 − 9)
cos 2x

=
3

2
− cos x+

1

50
(2D + 3) cos 2x

=
3

2
− cos x+

1

50
(−4 sin 2x+ 3 cos 2x).

Hence the general solution is

y = C.F. + P.I.

= (C1 + C2x)e
−x +

3

2
− cos x+

1

50
(−4 sin 2x+ 3 cos 2x).

�
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21. Rule for finding the particular integral when X is of the form xm with a constant
positive integer m.

Here we have to evaluate 1
f(D)

xm. First we take out the lowest degree term – with sign – from

f(D), leaving the remaining factor of the form 1 ± φ(D). We shall expand this factor into a series
of powers of D. In fact, since Dkxm = 0 for each k > m, the power series will reduce to a finite
polynomial in D with possible highest power m. Let us recall certain power series to be used.

(1−D)−1 = 1 +D +D2 +D3 + · · ·
(1−D)−2 = 1 + 2D + 3D2 + 4D3 + · · ·

(1−D)−3 = 1 + 3D + 6D2 + 10D3 + · · ·+ (r + 1)(r + 2)

2
Dr + · · ·

(1 +D)−1 = 1−D +D2 −D3 + · · ·
(1 +D)−2 = 1− 2D + 3D2 − 4D3 + · · ·
(1 +D)−3 = 1− 3D + 6D2 − 10D3

+ · · ·+ (−1)r
(r + 1)(r + 2)

2
Dr + · · ·

In general, using Binomial Theorem, for n ∈ Z,

(1−D)n = 1 + nD +
n(n− 1)

2!
D2 +

n(n− 1)(n− 1)

3!
D3 + · · ·

Example 22. Solve

(1) (D3 −D2 − 6D)y = x3.

(2) (D3 + 4D)y = sin 2x+ 3e2x + 2x.

Solution. (1) Here the auxiliary equation is

D3 −D2 − 6D = 0

⇒ D(D2 −D − 6) = 0

⇒ D(D − 3)(D + 2) = 0

⇒ D = 0, 3,−2.

Thus C.F. = C1 + C2e
3x + C3e

−2x. Now,

P.I. =
1

D3 −D2 − 6D
x3

=
1

−6D(1− D2−D
6

)
x3

= − 1

6D

(
1− D2 −D

6

)−1

x3

= − 1

6D

[
1 +

D2 −D

6
+

(
D2 −D

6

)2

+

(
D2 −D

6

)3

+ · · ·

]
x3

= − 1

6D

[
x3 +

D2 −D

6
x3 +

(
D4 − 2D3 +D2

36

)
x3 − D3

216
x3 + · · ·

]
= − 1

6D

[
x3 +

6x− 3x2

6
+

0− 12 + 6x

36
− 1

36

]
= −x

4

24
− x2

12
+
x3

36
+

x

18
− x2

72
+

x

216

= −x
4

24
+
x3

36
− 7x2

72
+

13x

216
.

11



Hence the general solution is

y = C.F. + P.I.

= C1 + C2e
3x + C3e

−2x − x4

24
+
x3

36
− 7x2

72
+

13x

216
.

(2) Here the auxiliary equation is

D3 + 4D = 0 ⇒ D(D2 + 4) = 0 ⇒ D = 0,±2i.

Thus the

C.F. = C1e
0x + C2 cos 2x+ C3 sin 2x

= C1 + C2 cos 2x+ C3 sin 2x.

Now,

P.I. =
1

(D2 + 4)D
(sin 2x+ 3e2x + 2x)

=
1

D2 + 4

(
−cos 2x

2
+

3e2x

2
+ x2

)
= −1

2

1

D2 + 4
cos 2x+

3

2

1

D2 + 4
e2x +

1

D2 + 4
x2

= −x
8
sin 2x+

3

16
e2x +

1

4

1

(1 + D2

4
)
x2

= −x
8
sin 2x+

3

16
e2x +

1

4

(
1 +

D2

4

)−1

x2

= −x
8
sin 2x+

3

16
e2x +

1

4

(
1− D2

4
+

(
D2

4

)2

− . . .

)
x2

= −x
8
sin 2x+

3

16
e2x +

1

4

(
x2 − D2

4
x2 +

D4

16
x2 − . . .

)
= −x

8
sin 2x+

3

16
e2x +

x2

4
− 1

8
.

Hence the general solution is

y = C.F. + P.I.

= C1 + C2 cos 2x+ C3 sin 2x−
x

8
sin 2x+

3

16
e2x +

x2

4
− 1

8
.

�

Rule for finding the particular integral when X = eaxV where V is a
function of x.

Theorem 23. In usual notation prove that 1
f(D)

eaxV = eax 1
f(D+a)

V , where V is a function of x.

Proof. Here we have to evaluate 1
f(D)

eaxV . Let us note that for any function W of x,

D(eaxW ) = eaxDW + aeaxW = eax(D + a)W.

D2(eaxW ) = D(eax(D + a)W ) = eax(D + a)2W.

In general,

Dn(eaxW ) = eax(D + a)nW.

12



Therefore,

f(D)eaxW = (Dn + a1D
n−1 + · · ·+ an)e

axW

= eax[(D + a)n + a1(D + a)n−1 + · · ·+ an]W

= eaxf(D + a)W.

Suppose now thatW is given by f(D+a)W = V . ThenW = 1
f(D+a)

V . As a result, f(D)eax 1
f(D+a)

V =

eaxV . So, operating 1
f(D)

on both the sides gives,

eax
1

f(D + a)
V =

1

f(D)
eaxV.

Hence we have 1
f(D)

eaxV = eax 1
f(D+a)

V , where V is a function of x. �

Example 24. Solve (D2 + 2)y = (x2 + 1)e3x + ex cos 2x.

Solution. Here the auxiliary equation is

D2 + 2 = 0 ⇒ D = ±i
√
2.

Thus the C.F. = C1 cos(
√
2x) + C2 sin(

√
2 x). Now

P.I. =
1

D2 + 2
((x2 + 1)e3x + ex cos 2x)

=
1

D2 + 2
e3x(x2 + 1) +

1

D2 + 2
ex cos 2x

= e3x
1

(D + 3)2 + 2
(x2 + 1) + ex

1

(D + 1)2 + 2
cos 2x

= e3x
1

D2 + 6D + 11
(x2 + 1) + ex

1

D2 + 2D + 3
cos 2x

=
e3x

11

1(
1 + D2+6D

11

)(x2 + 1) + ex
1

2D − 1
cos 2x

=
e3x

11

(
1 +

D2 + 6D

11

)−1

(x2 + 1) + ex(2D + 1)
1

4D2 − 1
cos 2x

=
e3x

11

(
1− D2 + 6D

11
+

(
D2 + 6D

11

)2

− · · ·

)
(x2 + 1)

− 1

17
ex(2D + 1) cos 2x

=
e3x

11

(
x2 + 1− 2 + 12x

11
+

72

121

)
− 1

17
ex(−4 sin 2x+ cos 2x)

=
e3x

11

(
x2 − 12x

11
+

171

121

)
− 1

17
ex(−4 sin 2x+ cos 2x).

Hence the general solution is

y = C.F. + P.I.

= C1 cos(
√
2 x) + C2 sin(

√
2x)

+
e3x

11

(
x2 − 12x

11
+

171

121

)
− 1

17
ex(−4 sin 2x+ cos 2x).

�
Example 25. Solve (D2 − 2D + 1)y = x2e3x.
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Rule for finding the particular integral when X is of the form xV, where V is a
function of x.

Theorem 26. In usual notation prove that 1
f(D)

xV =
[
x− 1

f(D)
f ′(D)

]
1

f(D)
V,

where V is function of x.

Proof. We have to evaluate 1
f(D)

xV . Let W be any function of x. Let ′ denote the derivative with

respect to D. Then

D(xW ) = xDW +W

= xDW +
d

dD
(D)W

= xDW +D′W.

Also,

D2(xW ) = D(xDW +W )

= xD2W +DW +DW

= xD2W + 2DW

= xD2W +
d

dD
(D2)W

= xD2W + (D2)′W.

In general,

Dn(xW ) = xDnW + (Dn)′W.

Therefore,

f(D)xW = (Dn + a1D
n−1 + · · ·+ an)xW

= xf(D)W + f ′(D)W.

Now suppose that W is given by f(D)W = V .
Hence, W = 1

f(D)
V .

Therefore, f(D)x 1
f(D)

V = xV + f ′(D) 1
f(D)

V .

Operating by 1
f(D)

on both the sides, we obtain,

x
1

f(D)
V =

1

f(D)
xV +

1

f(D)
f ′(D)

1

f(D)
V

⇒ 1

f(D)
xV =

[
x− 1

f(D)
f ′(D)

]
1

f(D)
V.

Hence,

1

f(D)
xV =

[
x− 1

f(D)
f ′(D)

]
1

f(D)
V,

where V is a function of x. �

Example 27. Solve (D2 + 9)y = x sin x.

Solution. Here the auxiliary equation is

D2 + 9 = 0 ⇒ D = ±3i.
14



Thus the C.F. = C1 cos 3x+ C2 sin 3x. Now,

P.I. =
1

D2 + 9
(x sinx)

=

(
x− 1

D2 + 9
2D

)
1

D2 + 9
sinx

= x
1

D2 + 9
sinx− 2D

1

(D2 + 9)2
sin x

= x
1

8
sin x− 2D

1

64
sinx

=
x sin x

8
− cos x

32
.

Hence the general solution is

y = C.F. + P.I.

= C1 cos 3x+ C2 sin 3x+
x sinx

8
− cosx

32
.

�

4. Solution of homogeneous linear differential equations

In this section, we consider the equation

xn
dny

dxn
+ a1x

n−1 d
n−1y

dxn−1
+ · · ·+ any = X, (17)

which is called a homogeneous linear differential equation of order n, where a1, a2, . . . , an are constants
and X is a function of x. This equation is also known as Cauchy’s homogeneous linear equation.

In what follows we shall denote the derivative with respect to the variable z by D1. To solve
the equation (17), let x = ez, that is, z = log x. Hence dz

dx
= 1

x
. Then dy

dx
= dy

dz
dz
dx

= dy
dz

1
x
or

x dy
dx

= dy
dz

= D1y, where D1 =
d
dz
. Further,

d2y

dx2
=

d

dx

(
1

x

dy

dz

)
= − 1

x2
dy

dz
+

1

x

d

dx

(
dy

dz

)
= − 1

x2
dy

dz
+

1

x

d

dz

(
dy

dz

)
dz

dx

= − 1

x2
dy

dz
+

1

x2
d2y

dz2
.

Hence,

x2
d2y

dx2
=
d2y

dz2
− dy

dz
= D2

1y −D1y = D1(D1 − 1)y,

where D1 =
d
dz
. Similarly,

x3
d3y

dx3
= (D3

1 − 3D2
1 + 2D1)y = D1(D1 − 1)(D1 − 2)y.

Continuing in this fashion we get,

xn
dny

dxn
= D1(D1 − 1)(D1 − 2) . . . (D1 − n+ 1)y.

Substituting all these values in (17) we have,

[D1(D1 − 1) . . . (D1 − n + 1) + a1D1(D1 − 1) . . . (D1 − n + 2) + · · · + an]y = Z.

That is,
φ(D1)y = Z,

15



where Z is a function of z.
This is a linear differential equation with constant coefficients with z as an independent variable.

This equation can now be solved by the methods already discussed.

Example 28. Solve

(1) x3 d3y
dx3 + 2x2 d2y

dx2 + 2y = 15(x− x−1).

(2) x3 d2y
dx2 − 3x2 dy

dx
+ xy = log x cos(log x).

Solution. (1) Here the given equation is a homogeneous linear equation. Let x = ez, that is, z = log x.
Then the given equation becomes

(D1(D1 − 1)(D1 − 2) + 2D1(D1 − 1) + 2)y = 15(ez − e−z),

whereD1 =
d

dz
⇒(D3

1 −D2
1 + 2)y = 15(ez − e−z).

We solve this equation for y as a function of z. Here the auxiliary equation is

D3
1 −D2

1 + 2 = 0

⇒D2
1(D1 + 1)− 2D1(D1 + 1) + 2(D1 + 1) = 0

⇒(D1 + 1)(D2
1 − 2D1 + 2) = 0

⇒D1 = −1, 1± i.

Thus C.F. = C1e
−z + ez(C2 cos z + C3 sin z). That is,

C.F. = C1x
−1 + x(C2 cos(log x) + C3 sin(log x)).

Now,

P.I. =
1

D3
1 −D2

1 + 2
15(ez − e−z)

= 15
1

D3
1 −D2

1 + 2
ez − 15

1

D3
1 −D2

1 + 2
e−z

=
15

2
ez − 15

1

(D1 + 1)(D2
1 − 2D1 + 2)

e−z

=
15

2
ez − 15

1

5(D1 + 1)
e−z

=
15

2
ez − 3ze−z

=
15

2
x− 3x−1 log x.

Hence the general solution is

y = C.F. + P.I.

= C1x
−1 + x(C2 cos(log x) + C3 sin(log x)) +

15

2
x− 3x−1 log x.

(2) Given equation can be written as

(x2D2 − 3xD + 1)y = x−1 log x cos(log x), (18)

which is a homogeneous linear equation. Let x = ez, that is, z = log x. Then equation (18) becomes

(D1(D1 − 1)− 3D1 + 1)y = e−zz cos z

⇒ (D2
1 − 4D1 + 1)y = e−zz cos z.
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Hence the auxiliary equation is

D2
1 − 4D1 + 1 = 0

⇒D1 =
4±

√
12

2
= 2±

√
3.

Hence, C.F. = C1e
(2+

√
3)z + C2e

(2−
√
3)z

= C1e
(2+

√
3) log x + C2e

(2−
√
3) log x

= C1x
2+

√
3 + C2x

2−
√
3

= x2(C1x
√
3 + C2x

−
√
3).

Now,

P.I. =
1

D2
1 − 4D1 + 1

e−z(z cos z)

= e−z 1

(D1 − 1)2 − 4(D1 − 1) + 1
(z cos z)

= e−z 1

D2
1 − 6D1 + 6

(z cos z)

= e−z

[
z

1

D2
1 − 6D1 + 6

cos z − 1

(D2
1 − 6D1 + 6)2

(2D1 − 6) cos z

]
= e−z

[
z

1

D2
1 − 6D1 + 6

cos z − 1

(D2
1 − 6D1 + 6)2

(−2 sin z − 6 cos z)

]
= e−z

[
z

1

5− 6D1

cos z +
1

(5− 6D1)2
(2 sin z + 6 cos z)

]
= e−z

[
z(5 + 6D1)

1

25− 36D2
1

cos z +
1

25− 60D1 + 36D2
1

(2 sin z + 6 cos z)

]
= e−z

[
z(5 + 6D1)

1

61
cos z +

1

−11− 60D1

(2 sin z + 6 cos z)

]
= e−z

[ z
61

(5 cos z − 6 sin z) −(60D1 − 11)
1

3600D2
1 − 121

(2 sin z + 6 cos z)

]
= e−z

[
z

61
(5 cos z − 6 sin z) + (60D1 − 11)

1

3721
(2 sin z + 6 cos z)

]
= e−z

[ z
61

(5 cos z − 6 sin z) +
1

3721
(120 cos z − 360 sin z − 22 sin z − 66 cos z)

]
= e−z

[
z

61
(5 cos z − 6 sin z) +

1

3721
(54 cos z − 382 sin z)

]
= x−1

[
log x

61
(5 cos(log x)− 6 sin(log x)) +

1

3721
(54 cos(log x)− 382 sin(log x))

]
.

Hence the general solution is y = C.F. + P.I.

y = x2(C1x
√
3+C2x

−
√
3)+x−1

[
log x
61

(5 cos(log x)− 6 sin(log x))+ 1
3721

(54 cos(log x)− 382 sin(log x))
]
.

�
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